# Hounsfield Unit Threshold Supportive of Brain Death Diagnosis

Hounsfield unit less than 80 discriminates between clinically significant cerebral perfusion and stasis filling, allowing confirmation of brain death

- M1–94% sensitive, 100% specific
- A1–96% sensitive, 100% specific
- BA– 100% sensitive, 100% specific
- M1, A1, and BA– 96% sensitive, 100% specific

## Conclusion

 Our results confirm previous reports that absence of cerebral blood flow on CTA is consistent with brain death

100% sensitivity and 100% specificity

## Conclusion

 Quantitative analysis of CTA can differentiate between preserved cerebral perfusion and stasis filling for the evaluation of brain death

- We propose that a HU less than 80 for M1, A1, and BA is concordant with no flow on NMPT
  - Indicative of a lack of clinically significant cerebral perfusion
  - Supportive of a diagnosis of brain death

### **Future Studies**

 A large prospective multi-institutional study must be performed to confirm our findings and standardize our defined criteria for the utilization of CTA as an ancillary diagnostic study for brain death





1. Memorial Health University Medical Center. *Patient Care Policy: Death determination- Adult.* Savannah, GA: Memorial Health University Medical Center; March 1, 2013.

2. Berenguer C, Davis F, Howington J. Brain death confirmation: comparison of computed tomographic angiography with nuclear medicine perfusion scan. *J Trauma*. 2010;68(3):553-559.

3. Sawicki M, Bohatyrewicz R, Walecka A, Solek-Pastuszka J, Rowinski O, Walecki J. CT angiography in the diagnosis of brain death. *Pol J Radiol.* 2014;79:417-421.

4. Wijdicks EF. The diagnosis of brain death. N Engl J Med. 2001;344:1215-1221.

5. Welschehold S, Kerz T, Boor S, Reuland K, Thomke F, Reuland A, Beyer C, Tschan C, Wagner W, Muller-Forell W, Giese A. Computer tomographic angiography as a useful adjunct in the diagnosis of brain death. *J Trauma Acute Care Surg.* 2013;74(5):1279-1285.

6. Escudero D, Otero J, Marques L, Parra D, Gonzalo JA, Albaiceta GM, Cofiño L, Blanco A, Vega P, Murias E, Meilan A, Roger R, Taboada F. Diagnosing brain deah by CT perfusion and multislice CT angiography. *Neurocrit Care.* 2009;11:261-271.

7. Dupas B, Gayet-Delacroix M, Villers D, Antonioli D, Veccherini MF, Soulillou JP. Diagnosis of brain death using two-phase spiral CT. *Am J Neuroradiology.* 1998;19(4):641-647.

8. Frampas E, Videcoq M, de Kerviler E, Ricolfi F, Kuoch V, Mourey F, Tenaillon A, Dupas B. CT angiography for brain death diagnosis. *Am J Neuroradiol.* 2009;30(8):1566-1570.

9. Combes JC, Chomel A, Ricolfi F, d'Athis P, Freysz M. Reliability of computed tomographic angiography in the diagnosis of brain death. *Transplant Proc.* 2007;39(1):16-20.

10. Rieke, A, Regli B, Mattle H, Brekenfeld C, Gralla J, Schroth G, Ozdoba C. Computer tomographic angiography (CTA) to prove circulatory arrest for the diagnosis of brain death in the context of organ transplantation. *Swiss Med Wkly.* 2011;141:w13261.

11. Sawicki M, Bohatyrewicz R, Walecka A, Walecki J, Rowinski O, Solek-Pastuszka J, Czajkowski Z, Guzinski M, Burzynska M, Wojczal J. Computer tomographic angiography criteria in the diagnosis of brain death- comparison of sensitivity and interobserver reliability of different evaluation scales. *Neuroradiology.* 2014;56:609-620.

## **References (cont)**

12. Leclerc X, Taschner CA, Vidal A, Strecker G, Savage J, Gauvrit JY, Pruvo JP. The role of spiral CT for the assessment of the intracranial circulation in suspected brain-death. *J Neuroradiol.* 2006;33(2)90-95.

13. Quesnel C, Fulgencio JP, Adrie C, Marro B, Payen L, Lembert N, El Metaoua S, Bonnet F. Limitations of computed tomographic angiography in the diagnosis of brain death. *Intensive Care Med.* 2007;33(12):2129-2135.

14. Shankar J, Vandorpe R. CT perfusion for confirmation of brain death. Am J Neuroradiol. 2013;34:1175-1179.

15. Kramer A, Roberts D. Computed tomography angiography in the diagnosis of brain death: a systematic review and meta-analysis. *Neutocrit Care.* 2014;21:539-550.

16. Taylor T, Dineen RA, Gardiner DC, Buss CH, Howatson A, Pace NL. Computer tomography (CT) angiography for confirmation of the clinical diagnosis of brain death. *Cochrane Database of Systematic Reviews*. 2014;3: CD00969.

17. Welschehold S, Kerz T, Boor S, Reuland K, Thomke F, Reuland A, Beyer C, Wagner W, Muller-Forell W, Giese A. Detection of intracranial circulatory arrest in brain death using cranial CT-angiography. *European Journal of Neurology*. 2013;20:173-179.

18. Flowers WM Jr, Patel BR. Persistence of cerebral blood flow after brain death. South Med J. 2000;93(4):364-370.

19. Korein J, Braunstein P, George A, Wichter M, Kricheff I, Lieberman A, Pearson J. Brain death: I. Angiographic correlation with the radioisotopic bolus technique for evaluation of critical deficit of cerebral blood flow. *Ann Neurol.* 1977;2(3):195-205.

20. Kricheff II, Pinto RS, George AE, Braunstein P, Korein J. Angiographic findings in brain death. Ann NY Acad Sci. 1978;315:168-183.

Sawicki M, Bohatyrewicz R, Safranow K, Walecka A, Walecki J, Rowinski O, Solek-Pastuszka J, Czajkowski Z, Marzec-Lewenstein E, Motyl K, Przybyl W, Czarnecka A. Dynamic evaluation of stasis filling phenomenon with computed tomography in diagnosis of brain death. *Neuroradiology.* 2013;55(9)1061-1069.
 Bohatyewicz R, Sawicki M, Walecka A, Rowinski O, Bohatyewicz A, Czajkowski Z, Krzysztalowski A, Solek-Pastuszka J, Zukowski M, Marzec-Lewenstein E, Wojtaszek M. Computer tomographic angiography and perfusion in the diagnosis of brain death. *Transplantation Proceedings.* 2010;42:3941-3946.
 Vassar College. Concepts & Applications of Inferential Statistics – Chapter 14. One-Way Analysis of Variance for Independent Samples – Part 2. http://vassarstats.net/textbook/ch14pt2.html Updated 2013. Accessed October 13, 2014.

24. Tukey JW. Comparing individual means in the analysis of variance. *Biometrics*. 1949;5(2):99-114.

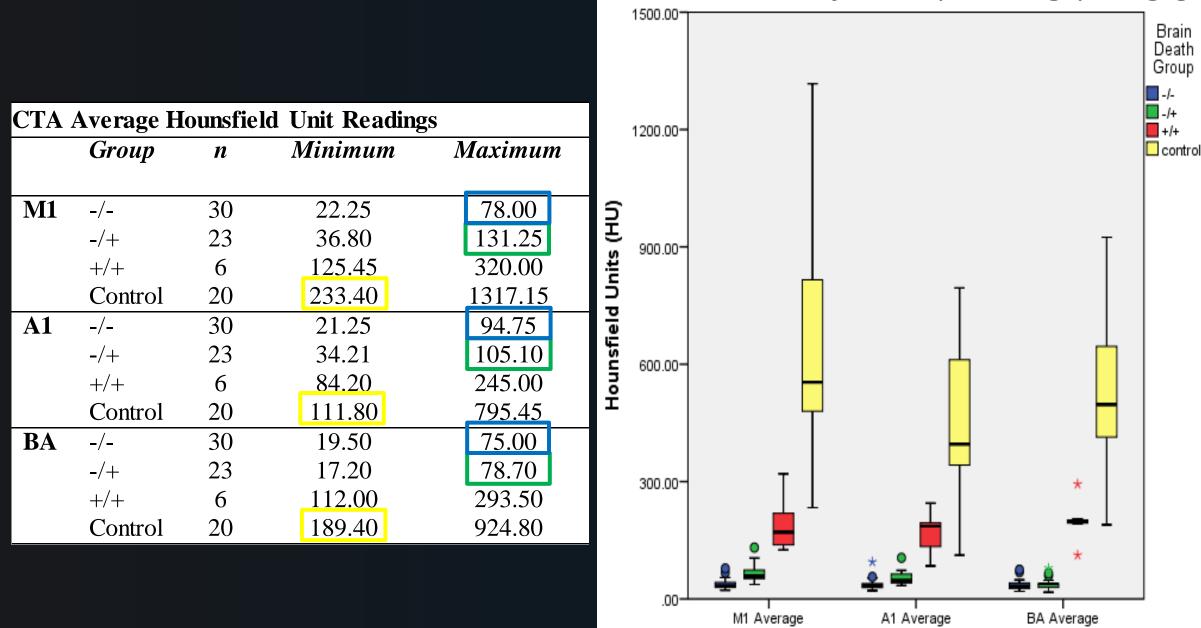
25. Cabrer C, Domínguez-Roldan JM, Manyalich M, Trias E, Paredes D, Navarro A, Nicolás J, Valero R, García C, Ruiz A, Vilarrodona A. Persistence of intracranial diastolic flow in transcranial Doppler sonography exploration of patients in brain death. *Transplant Proc.* 2003;35(5):1642-1643.

# Demographics

| Demographic Data              |              |          |         |
|-------------------------------|--------------|----------|---------|
| Group                         | Study Cohort | Control  | р       |
| N                             | 60           | 20       |         |
| Age, Mean (years)             | 36.3         | 64.4     | < 0.001 |
| Age, Median (years)           | 33.2         | 64       | < 0.001 |
| Male                          | 41 (68.4%)   | 4 (20%)  | 0.001   |
| Female                        | 19 (31.6%)   | 16 (80%) | 0.001   |
| Mechanism of Injury           |              |          |         |
| Hemorrhagic Stroke            | 7            | 0        | 0.155   |
| Motor Vehicle Collision       | 15           | 0        | 0.002   |
| Fall                          | 5            | 1        | 0.638   |
| Gun Shot Wound                | 12           | 1        | 0.077   |
| Anoxic Brain Injury           | 4            | 0        | 0.312   |
| Assault                       | 2            | 0        | 0.787   |
| Ischemic Stroke               | 1            | 7        | < 0.001 |
| Ruptured Aneurysm             | 4            | 1        | 0.446   |
| Meningitis                    | 1            | 0        | 0.647   |
| Pedestrian vs Auto            | 5            | 0        | 0.073   |
| Motorcycle Collision          | 1            | 0        | 0.481   |
| All-Terrain Vehicle Collision | 1            | 0        | 0.481   |
| Headache                      | 0            | 9        | < 0.001 |
| Toxic Encephalopathy          | 0            | 1        | 0.394   |

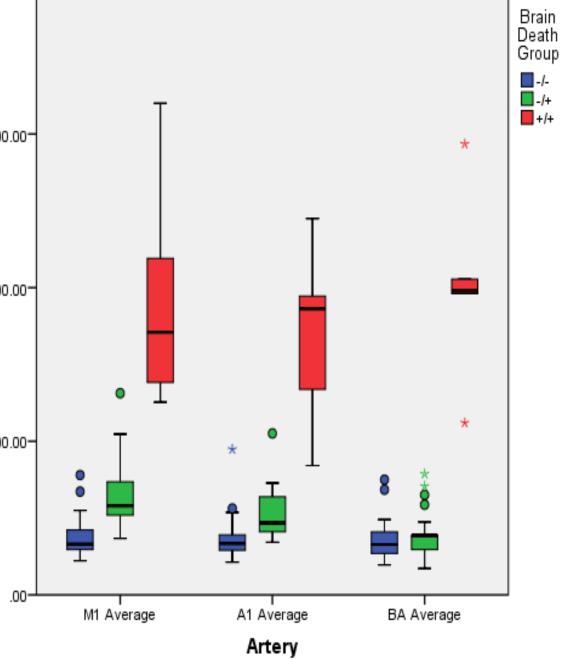
# Study Cohort Homogeneity

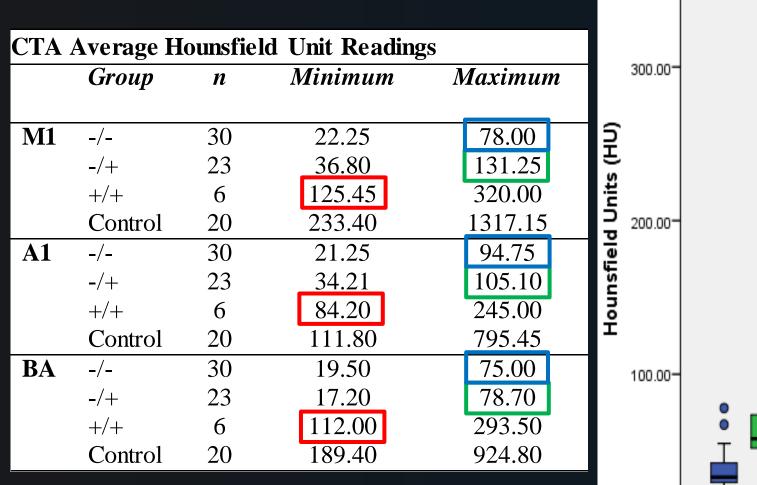
 Analysis of demographic and clinical features between the -/-, -/+, and +/+ groups was performed

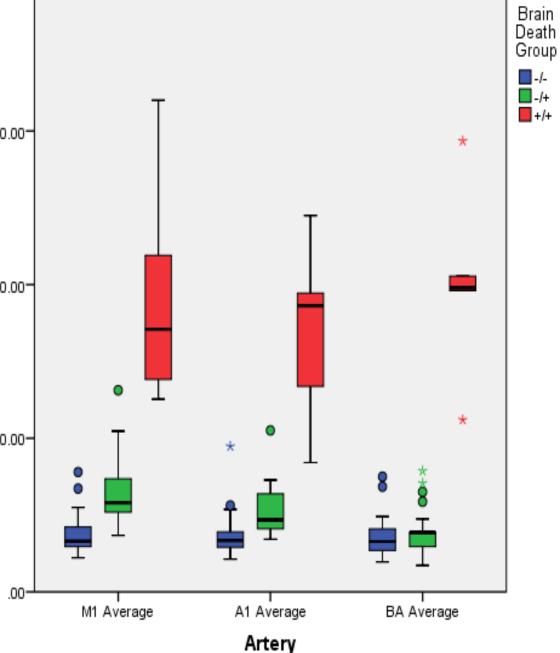

| TABLE 1. Demographic Data For Clin   |            |             | -         |      |
|--------------------------------------|------------|-------------|-----------|------|
| Group                                | -/-        | <b>-</b> /+ | +/+       | р    |
| N                                    | 30         | 23          | 6         |      |
| Age, Mean (years)                    | 40.37      | 39.96       | 28.50     | .263 |
| Age, Median (years)                  | 38.50      | 37.00       | 24.00     | .263 |
| Male                                 | 23 (76.7%) | 14 (60.8%)  | 4 (66.7%) | .459 |
| Female                               | 7 (23.3%)  | 9 (39.2%)   | 2 (33.3%) | .459 |
| Mechanism of Injury                  |            |             |           | .280 |
| Hemorrhagic Stroke                   | 5          | 1           | 1         | .361 |
| Motor Vehicle Collision              | 12         | 2           | 1         | .030 |
| Fall                                 | 2          | 3           | 0         | .522 |
| Gun Shot Wound                       | 5          | 4           | 3         | .163 |
| Anoxic Brain Injury                  | 1          | 2           | 1         | .444 |
| Assault                              | 1          | 1           | 0         | .871 |
| Ischemic Stroke                      | 1          | 0           | 0         | .612 |
| Ruptured Aneurysm                    | 1          | 3           | 0         | .297 |
| Meningitis                           | 1          | 0           | 0         | .612 |
| Pedestrian vs Auto                   | 1          | 4           | 0         | .140 |
| Motorcycle Collision                 | 0          | 2           | 0         | .198 |
| All-Terrain Vehicle Collision        | 0          | 1           | 0         | .451 |
| Surgery                              |            |             |           |      |
| Craniotomy                           | 0          | 1           | 0         | .451 |
| Craniectomy                          | 1          | 4           | 1         | .113 |
| Intracranial Pressure Monitor Placed | 9          | 8           | 4         | .230 |
| Status                               |            |             |           |      |
| Dead                                 | 30         | 23          | 6         | *    |
| Brain dead                           | 30         | 23          | 5         | .011 |
| Pronounced Dead by                   |            |             |           |      |
| Neurosurgeon                         | 16         | 12          | 3         | .988 |
| Surgical Critical Care               | 13         | 10          | 3         | .988 |
| Pulmonary Critical Care              | 1          | 1           | 0         | .988 |
| Organ Donation:                      |            |             |           |      |
| Evaluated by Life-Link               | 23         | 16          | 5         | .735 |
| Organ Donor                          | 17         | 15          | 5         | .444 |
| Medical Comorbidities                |            |             |           |      |
| Coronary Artery Disease              | 1          | 2           | 0         | .710 |
| Hypertension                         | 9          | 6           | 1         | .787 |
| Diabetes                             | 1          | 3           | 0         | .480 |
| Hyperlipidemia                       | 3          | 1           | 0         | .699 |
| Anticoagulation Use                  | 2          | 1           | 0         | .766 |
| U                                    |            |             |           |      |

| Group                                | -/- | <b>-</b> /+ | +/+ | р    |
|--------------------------------------|-----|-------------|-----|------|
| N                                    | 30  | 23          | 6   |      |
| Mechanism of Injury                  |     |             |     | .280 |
| Hemorrhagic Stroke                   | 5   | 1           | 1   | .361 |
| Motor Vehicle Collision              | 12  | 2           | 1   | .030 |
| Fall                                 | 2   | 3           | 0   | .522 |
| Gun Shot Wound                       | 5   | 4           | 3   | .163 |
| Anoxic Brain Injury                  | 1   | 2           | 1   | .444 |
| Assault                              | 1   | 1           | 0   | .871 |
| Ischemic Stroke                      | 1   | 0           | 0   | .612 |
| Ruptured Aneurysm                    | 1   | 3           | 0   | .297 |
| Meningitis                           | 1   | 0           | 0   | .612 |
| Pedestrian vs Auto                   | 1   | 4           | 0   | .140 |
| Motorcycle Collision                 | 0   | 2           | 0   | .198 |
| All-Terrain Vehicle Collision        | 0   | 1           | 0   | .451 |
| Surgery                              |     |             |     |      |
| Craniotomy                           | 0   | 1           | 0   | .451 |
| Craniectomy                          | 1   | 4           | 1   | .113 |
| Intracranial Pressure Monitor Placed | 9   | 8           | 4   | .230 |
| Status                               |     |             |     |      |
| Dead                                 | 30  | 23          | 6   | *    |
| Brain dead                           | 30  | 23          | 5   | .011 |

| Group                                | -/- | <b>-</b> /+ | +/+ | р    |
|--------------------------------------|-----|-------------|-----|------|
| N –                                  | 30  | 23          | 6   |      |
| Mechanism of Injury                  |     |             |     | .280 |
| Hemorrhagic Stroke                   | 5   | 1           | 1   | .361 |
| Motor Vehicle Collision              | 12  | 2           | 1   | .030 |
| Fall                                 | 2   | 3           | 0   | .522 |
| Gun Shot Wound                       | 5   | 4           | 3   | .163 |
| Anoxic Brain Injury                  | 1   | 2           | 1   | .444 |
| Assault                              | 1   | 1           | 0   | .871 |
| Ischemic Stroke                      | 1   | 0           | 0   | .612 |
| Ruptured Aneurysm                    | 1   | 3           | 0   | .297 |
| Meningitis                           | 1   | 0           | 0   | .612 |
| Pedestrian vs Auto                   | 1   | 4           | 0   | .140 |
| Motorcycle Collision                 | 0   | 2           | 0   | .198 |
| All-Terrain Vehicle Collision        | 0   | 1           | 0   | .451 |
| Surgery                              |     |             |     |      |
| Craniotomy                           | 0   | 1           | 0   | .451 |
| Craniectomy                          | 1   | 4           | 1   | .113 |
| Intracranial Pressure Monitor Placed | 9   | 8           | 4   | .230 |
| Status                               |     |             |     |      |
| Dead                                 | 30  | 23          | 6   | *    |
| Brain dead                           | 30  | 23          | 5   | .011 |

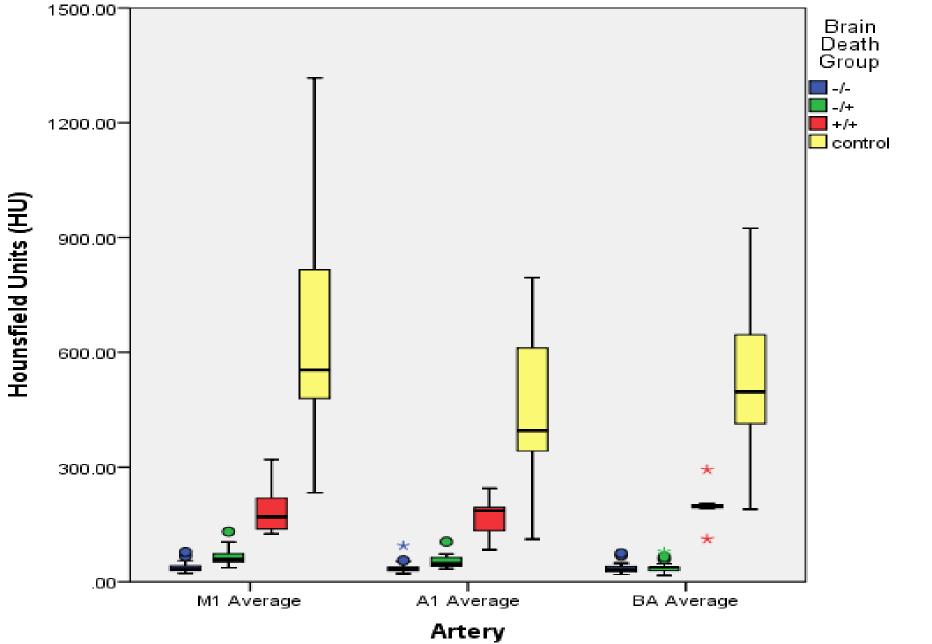

| Significan | t Differei | nces Betwe     | enGro | oups |                           |             |    |                    |
|------------|------------|----------------|-------|------|---------------------------|-------------|----|--------------------|
| Vessel     | Mean       | SD             | п     |      | Mean                      | SD          | n  | р                  |
|            |            |                |       |      |                           | _           |    |                    |
| _          |            | -/-            |       | vs.  |                           | <b>-</b> /+ |    |                    |
| M1         | 37.44      | 12.89          | 30    |      | 64.73                     | 20.86       | 23 | .002               |
| A1         | 36.80      | 14.07          | 30    |      | 53.43                     | 17.25       | 23 | .025               |
| BA         | 35.68      | 12.42          | 30    |      | 39.74                     | 15.46       | 23 | .778               |
|            |            | -/-            |       | vs.  |                           | +/+         |    |                    |
| M1         | 37.44      | 12.89          | 30    | -    | 190.74                    | 73.58       | 6  | < 0.001            |
| A1         | 36.80      | 14.07          | 30    |      | 171.66                    | 55.52       | 6  | < 0.001            |
| BA         | 35.68      | 12.42          | 30    |      | 200.02                    | 57.51       | 6  | < 0.001            |
|            |            | <b>-</b> /+    |       | vs.  |                           | +/+         |    |                    |
| M1 -       | 64.73      | 20.86          | 23    |      | 190.74                    | 73.58       | 6  | < 0.001            |
| A1         | 53.43      | 17.25          | 23    |      | 171.66                    | 55.52       | 6  | < 0.001            |
| BA         | 39.74      | 15.46          | 23    |      | 200.02                    | 57.51       | 6  | < 0.001            |
|            |            |                |       |      |                           |             |    |                    |
| -          |            | -/-            |       | vs.  |                           | control     |    |                    |
| M1         | 37.44      | 12.89          | 30    |      | 634.32                    | 252.35      | 20 | < 0.001            |
| A1         | 36.80      | 14.07          | 30    |      | 452.64                    | 182.53      | 20 | < 0.001            |
| BA         | 35.68      | 12.42          | 30    |      | 540.67                    | 193.62      | 20 | < 0.001            |
|            |            | <b>-</b> /+    |       | vs.  |                           | control     |    |                    |
| M1 -       | 64.73      | 20.86          | 23    |      | 634.32                    | 252.35      | 20 | < 0.001            |
| A1         | 53.43      | 17.25          | 23    |      | 452.64                    | 182.53      | 20 | < 0.001            |
| BA         | 39.74      | 15.46          | 23    |      | 540.67                    | 193.62      | 20 | < 0.001            |
|            |            | +/+            |       | vs.  |                           | control     |    |                    |
| M1         | 190.74     | 73.58          | 6     | -    | 634.32                    | 252.35      | 20 | < 0.001            |
| A1         | 171.66     | 55.52          | 6     |      | 452.64                    | 182.53      | 20 | < 0.001<br>< 0.001 |
| BA         | 200.02     | 55.52<br>57.51 | 6     |      | 4 <i>32</i> .04<br>540.67 | 182.53      | 20 | < 0.001            |
|            | 200.02     | 57.51          | U     |      | J+0.07                    | 175.02      | 20 | < 0.001            |

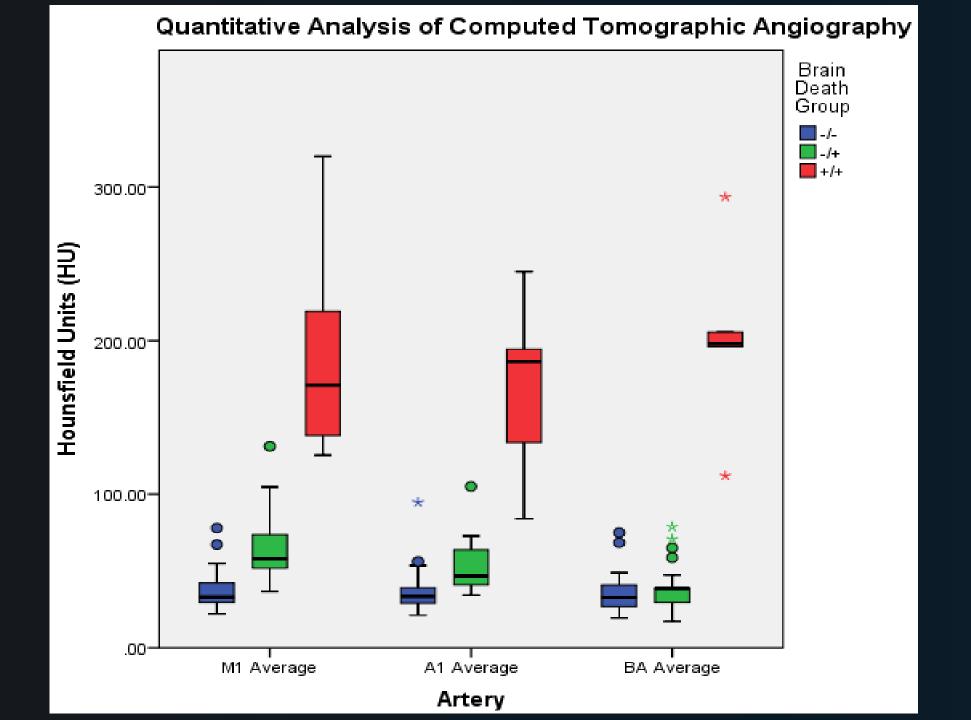

| Signific | cant Differe | nces Betwo  | eenGro | oups |        |             |    |         |
|----------|--------------|-------------|--------|------|--------|-------------|----|---------|
| Vesse    | l Mean       | SD          | n      | _    | Mean   | SD          | n  | р       |
|          |              | -/-         |        | vs.  |        | <b>-</b> /+ |    |         |
| M1       | 37.44        | 12.89       | 30     | -    | 64.73  | 20.86       | 23 | .002    |
| A1       | 36.80        | 14.07       | 30     |      | 53.43  | 17.25       | 23 | .025    |
| BA       | 35.68        | 12.42       | 30     |      | 39.74  | 15.46       | 23 | .778    |
|          |              | -/-         |        | vs.  |        | +/+         |    |         |
| M1       | 37.44        | 12.89       | 30     | -    | 190.74 | 73.58       | 6  | < 0.001 |
| A1       | 36.80        | 14.07       | 30     |      | 171.66 | 55.52       | 6  | < 0.001 |
| BA       | 35.68        | 12.42       | 30     |      | 200.02 | 57.51       | 6  | < 0.001 |
|          |              | <b>-</b> /+ |        | vs.  |        | +/+         |    |         |
| M1       | 64.73        | 20.86       | 23     | -    | 190.74 | 73.58       | 6  | < 0.001 |
| A1       | 53.43        | 17.25       | 23     |      | 171.66 | 55.52       | 6  | < 0.001 |
| BA       | 39.74        | 15.46       | 23     |      | 200.02 | 57.51       | 6  | < 0.001 |
|          |              | -/-         |        | vs.  |        | control     |    |         |
| M1       | 37.44        | 12.89       | 30     | -    | 634.32 | 252.35      | 20 | < 0.001 |
| A1       | 36.80        | 14.07       | 30     |      | 452.64 | 182.53      | 20 | < 0.001 |
| BA       | 35.68        | 12.42       | 30     |      | 540.67 | 193.62      | 20 | < 0.001 |
|          |              | <b>-</b> /+ |        | vs.  |        | control     |    |         |
| M1       | 64.73        | 20.86       | 23     | -    | 634.32 | 252.35      | 20 | < 0.001 |
| A1       | 53.43        | 17.25       | 23     |      | 452.64 | 182.53      | 20 | < 0.001 |
| BA       | 39.74        | 15.46       | 23     |      | 540.67 | 193.62      | 20 | < 0.001 |
|          |              | +/+         |        | vs.  |        | control     |    |         |
| M1       | 190.74       | 73.58       | 6      | -    | 634.32 | 252.35      | 20 | < 0.001 |
| A1       | 171.66       | 55.52       | 6      |      | 452.64 | 182.53      | 20 | < 0.001 |
| BA       | 200.02       | 57.51       | 6      |      | 540.67 | 193.62      | 20 | < 0.001 |



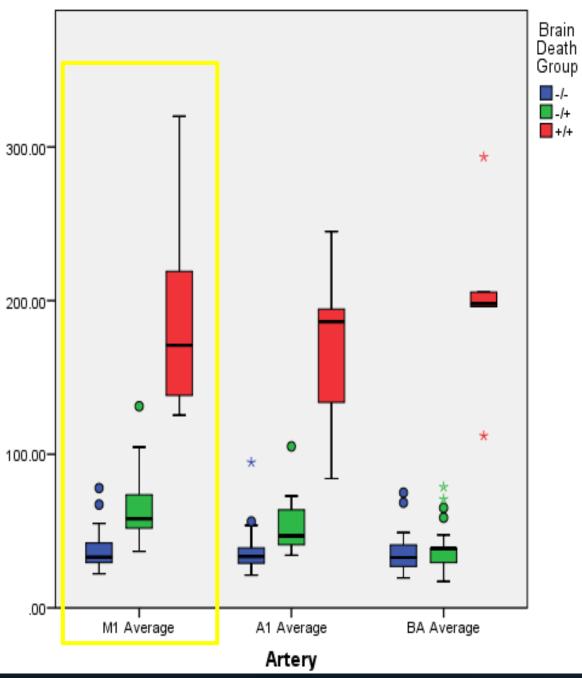

Artery

|    | A 11               | C•           |                            |               |            | -<br>-     |
|----|--------------------|--------------|----------------------------|---------------|------------|------------|
|    | Average H<br>Group | ounstie<br>n | ld Unit Reading<br>Minimum | gs<br>Maximum | 300.00-    |            |
| M1 | _/_                | 30           | 22.25                      | 78.00         | Units (HU) |            |
|    | <b>-</b> /+        | 23           | 36.80                      | 131.25        | ÷.         |            |
|    | +/+                | 6            | 125.45                     | 320.00        | niț        |            |
|    | Control            | 20           | 233.40                     | 1317.15       | 200.00     |            |
| A1 | -/-                | 30           | 21.25                      | 94.75         | Hounsfield |            |
|    | <b>-</b> /+        | 23           | 34.21                      | 105.10        | nsf        |            |
|    | +/+                | 6            | 84.20                      | 245.00        | no         |            |
|    | Control            | 20           | 111.80                     | 795.45        | Ξ          | • 1        |
| BA | -/-                | 30           | 19.50                      | 75.00         | 100.00-    | - T        |
|    | <b>-</b> /+        | 23           | 17.20                      | 78.70         |            |            |
|    | +/+                | 6            | 112.00                     | 293.50        |            | • <u> </u> |
|    | Control            | 20           | 189.40                     | 924.80        |            |            |
|    | Control            | 20           | 189.40                     | 924.80        |            |            |

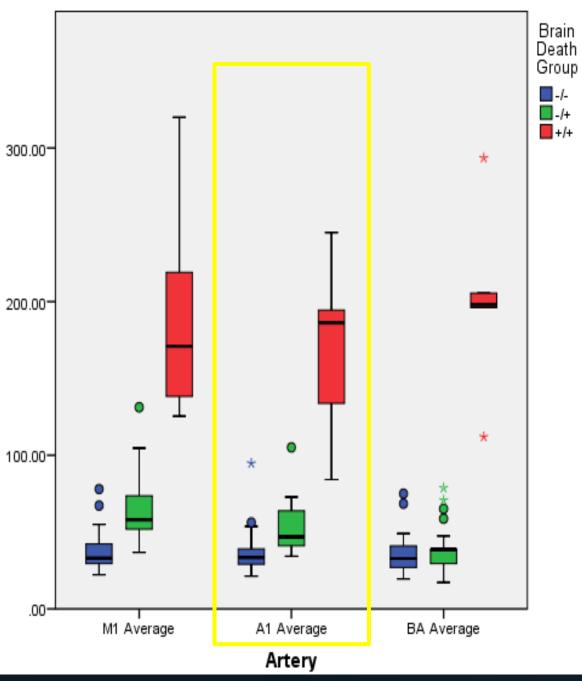


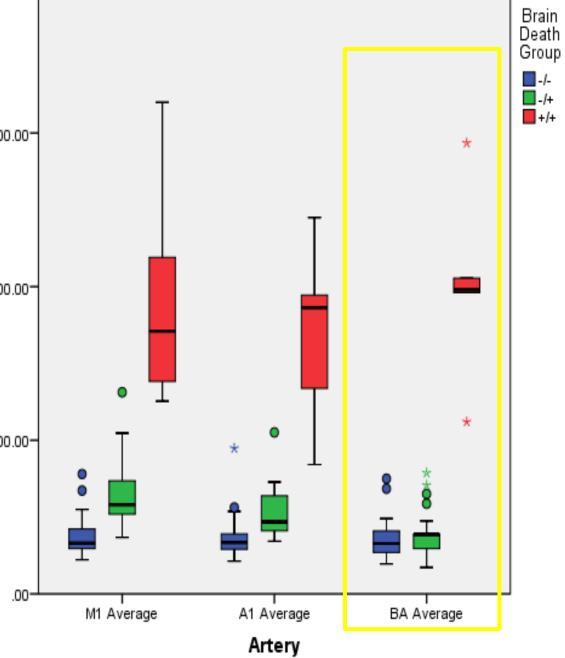




|     |             |         |                 |         | 1500.00                                     |            |            |                   |
|-----|-------------|---------|-----------------|---------|---------------------------------------------|------------|------------|-------------------|
|     |             |         |                 |         | 1300.00                                     | _          |            | B<br>D<br>G       |
| CTA | Average H   | ounsfie | ld Unit Reading | ζS      | 1200.00-                                    |            |            |                   |
|     | Group       | n       | Minimum         | Maximum | 1200.00                                     |            |            |                   |
| M1  | _/_         | 30      | 22.25           | 78.00   | ŝ                                           |            |            |                   |
|     | <b>_</b> /+ | 23      | 36.80           | 131.25  | ਤ<br>900.00−                                |            |            | т                 |
|     | +/+         | 6       | 125.45          | 320.00  | jit sic                                     |            |            |                   |
|     | Control     | 20      | 233.40          | 1317.15 | 5                                           |            | T          |                   |
| A1  | _/_         | 30      | 21.25           | 94.75   | Hounsfield Units (HU)<br>-00.006<br>-00.009 |            |            |                   |
|     | <b>-</b> /+ | 23      | 34.21           | 105.10  | <b>u</b> 600.00-                            |            |            |                   |
|     | +/+         | 6       | 84.20           | 245.00  | 0                                           |            |            |                   |
|     | Control     | 20      | 111.80          | 795.45  | T                                           |            |            |                   |
| BA  | -/-         | 30      | 19.50           | 75.00   |                                             |            | H          |                   |
|     | <b>-</b> /+ | 23      | 17.20           | 78.70   | 300.00-                                     | т          | Т          | *                 |
|     | +/+         | 6       | 112.00          | 293.50  |                                             |            | т          |                   |
|     | Control     | 20      | 189.40          | 924.80  |                                             | . 🗖        | <b>i</b>   |                   |
|     |             |         |                 |         |                                             | ₽ ∓        | ≛≗⊥⁺       | <u>e</u> <u>*</u> |
|     |             |         |                 |         | .00                                         |            |            |                   |
|     |             |         |                 |         |                                             | M1 Average | A1 Average | BA Average        |

Artery







| CTA .     | Average H   | [ounsfie] | ld Unit Reading | S       |            |
|-----------|-------------|-----------|-----------------|---------|------------|
|           | Group       | п         | Minimum         | Maximum |            |
|           |             |           |                 |         | _          |
| <b>M1</b> | -/-         | 30        | 22.25           | 78.00   | ΩH         |
|           | <b>-</b> /+ | 23        | 36.80           | 131.25  |            |
|           | +/+         | 6         | 125.45          | 320.00  | Units      |
|           | Control     | 20        | 233.40          | 1317.15 |            |
| <b>A1</b> | -/-         | 30        | 21.25           | 94.75   | Hounsfield |
|           | <b>-</b> /+ | 23        | 34.21           | 105.10  | nsf        |
|           | +/+         | 6         | 84.20           | 245.00  | no         |
|           | Control     | 20        | 111.80          | 795.45  | Г          |
| BA        | -/-         | 30        | 19.50           | 75.00   |            |
|           | -/+         | 23        | 17.20           | 78.70   |            |
|           | +/+         | 6         | 112.00          | 293.50  |            |
|           | Control     | 20        | 189.40          | 924.80  |            |



| CTA       | Average | Hounsfield | Unit Readin | gs      |                       |
|-----------|---------|------------|-------------|---------|-----------------------|
|           | Group   | n          | Minimum     | Maximum |                       |
| M1        | _/_     | 30         | 22.25       | 78.00   | Ĵ                     |
|           | -/+     | 23         | 36.80       | 131.25  | ۳<br>۲                |
|           | +/+     | 6          | 125.45      | 320.00  | Hounsfield Units (HU) |
|           | Control | 20         | 233.40      | 1317.15 | 2                     |
| <b>A1</b> | _/_     | 30         | 21.25       | 94.75   | le                    |
|           | -/+     | 23         | 34.21       | 105.10  | nsf                   |
|           | +/+     | 6          | 84.20       | 245.00  | no                    |
|           | Control | 20         | 111.80      | 795.45  | Т                     |
| BA        | _/_     | 30         | 19.50       | 75.00   |                       |
|           | -/+     | 23         | 17.20       | 78.70   |                       |
|           | +/+     | 6          | 112.00      | 293.50  |                       |
|           | Control | 20         | 189.40      | 924.80  |                       |



| CTA . | Average H   | ounsfie | ld Unit Reading | zs      |                       |        |
|-------|-------------|---------|-----------------|---------|-----------------------|--------|
|       | Group       | n       | Minimum         | Maximum |                       | 300.00 |
| M1    | _/_         | 30      | 22.25           | 78.00   | ร                     |        |
|       | -/+         | 23      | 36.80           | 131.25  | Hounsfield Units (HU) |        |
|       | +/+         | 6       | 125.45          | 320.00  | nits                  |        |
|       | Control     | 20      | 233.40          | 1317.15 | D I                   | 200.00 |
| A1    | -/-         | 30      | 21.25           | 94.75   | īeļ                   |        |
|       | <b>-</b> /+ | 23      | 34.21           | 105.10  | nsf                   |        |
|       | +/+         | 6       | 84.20           | 245.00  | no                    |        |
|       | Control     | 20      | 111.80          | 795.45  | T                     |        |
| BA    | _/_         | 30      | 19.50           | 75.00   |                       | 100.00 |
|       | <b>-</b> /+ | 23      | 17.20           | 78.70   |                       |        |
|       | +/+         | 6       | 112.00          | 293.50  |                       |        |
|       | Control     | 20      | 189.40          | 924.80  |                       |        |



## Evaluation of CTA Induced Contrast Nephropathy in Brain Death Evaluation

43 patients with clinical criteria of brain death, all patients underwent CTA and then cerebral angiography

- ♦ total of 160ml IV contrast received
- No statistically significant difference identified between the pre- and post-contrast creatinine levels (87.9µmol/L vs 120µmol/L respectively)

Combes et al. Transplantation Proceedings. 2007;39:16-20.

- 105 patients with clinical criteria of brain death, all patients underwent CTA
- ♦ total of 120ml IV contrast received
- No statistically significant difference was identified between the pre- and post-contrast mean creatinine levels (101.1µmol/L vs 89µmol/L respectively)

Frampas et al. Am J Neuroradiol. 2009;30(8):1566-1570

25 patients with clinical criteria of brain death, all patients underwent CTA

 No statistically significant difference was identified between the pre- and post-contrast mean creatinine levels (max rise was 18µmol/L)

Berenguer et al. Journal of Trauma. 2010; 68(3):553-559.

# Previous major studies assessing CTA have proposed three evaluation systems:

#### 10-, 7-, and 4-point scales

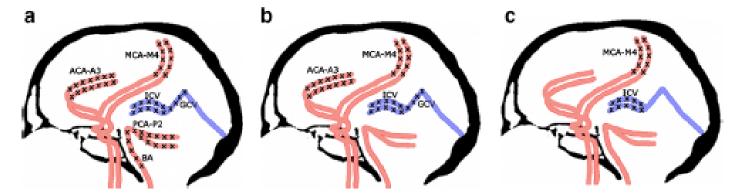



Fig. 1 Different criteria for the diagnosis of BD by CTA: a Positive result in the 10-point scale (score=10) confirming the diagnosis of BD was recorded when the following vessels were not opacified: the bilateral PCA-P2, the BA, the bilateral ACA-A3, the bilateral MCA-M4, the bilateral ICV, and the GCV. Scores from 0 to 9 were classified as negative results excluding the diagnosis of BD; b In the 7-point scale, positive result (score=7) was recorded with a lack of opacification of the bilateral ACA-A3, the bilateral MCA-M4, the bilateral ICV, and the GCV. Scores from 0 to 6 were classified as negative results; c Positive result in the 4-point scale (score=4) was recorded when the bilateral MCA-M4 and the bilateral ICV were not opacified. Scores from 0 to 3 were classified as negative results

Sawicki et al. Neuroradiology. 2014;56:609-620. Sawicki et al. Pol J Radiol. 2014; 79:417-421.

| Criteria                    | Lack of opacification of                                                                                                                                                           |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intracranial<br>non-filling | <ul> <li>ICA beyond the level of the anterior clinoid process</li> <li>VA beyond their dural penetration</li> <li>ICV, GCV and the straight sinus</li> </ul>                       |
| 10-point*                   | <ul> <li>BA</li> <li>Right and left PCA-P2</li> <li>Right and left ACA-A3 (pericallosal artery)</li> <li>Right and left MCA-M4</li> <li>Right and left ICV</li> <li>GCV</li> </ul> |
| 7-point*                    | <ul> <li>Right and left ACA-A3 (pericallosal artery)</li> <li>Right and left MCA-M4</li> <li>Right and left ICV</li> <li>GCV</li> </ul>                                            |
| 4-point*                    | Right and left MCA-M4 **     Right and left ICV                                                                                                                                    |
|                             |                                                                                                                                                                                    |

Table 1. (The surface in the in the dimension (DD)

\* One point is noted for each nonopacified vessel in the late phase. Cerebral circulatory arrest is diagnosed with the score of 10, 7, or 4 points, accordingly; \*\* according to the 4-point scale, opacification of 1 or 2 cortical branches of MCA on the same side does not exclude the diagnosis of cerebral circulatory arrest provided there is no opacification of ICVs.

# **Previous major studies assessing CTA have proposed three evaluation systems:**

#### Table 2. Sensitivity of CTA in the diagnosis of BD.

| Study authors and year                       | No of cases                     | Sensitivity (%)     |         |         |
|----------------------------------------------|---------------------------------|---------------------|---------|---------|
|                                              |                                 | 10-point            | 7-point | 4-point |
| Combes et al. 2007 [15]                      | 43                              | 70                  |         |         |
| Welschehold et al. 2013 [16]                 | 63                              | 54 *                |         |         |
| Dupas et al. 1998 [4]                        | 14                              |                     | 100     |         |
| Quesnel et al. 2007 [13]                     | 21                              |                     | 52**    |         |
| Frampas et al. 2009 [6]                      | 105                             |                     | 63      | 86      |
| Rieke et al. 2011 [14]                       | 29                              |                     | 76      | 93      |
| Leclerc et al. 2006 [7]                      | 15                              |                     |         | 87      |
| Sawicki et al. 2014 [9]                      | 82                              | 67                  | 74      | 96      |
| * GCV was not assessed, ** the study include | ed 5 out of 21 patients with ar | noxic brain injury. |         |         |

Sawicki et al. Pol J Radiol. 2014; 79:417-421.

# **Pitfalls of Confirmatory Tests**

#### **Cerebral Angiogram**

- Image variability with injection of arch or selective arteries
- Image variability with injection and/or push technique
- No guidelines for interpretation

#### EEG

- Artifacts in intensive care settings
- Information from mostly cortex
- Somatosensory evoked potentials
- Absent in comatose patients without brain death

#### Transcranial Doppler Ultrasonographic Scan

- Technical difficulties and skill-dependent
- Normal in anoxic-ischemic injury

#### **CT Angiogram**

- Interpretation difficulties
- Retained blood flow in 20% of cases
- Possibility to miss slow flow states because of rapid acquisition of images

#### **Nuclear Brain Scan**

 Areas of perfusion in thalamus in patients with anoxic injury or skull defect

#### Wijdicks et al. Neurology. 2010; 75:77-83.